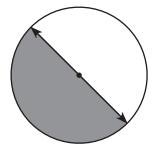

Angles and Fractional Parts of a Circle

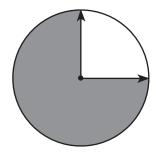
Find how many $\frac{1}{6}$ turns make a complete circle.

Materials: fraction circles

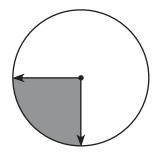
Step 1 Place a $\frac{1}{6}$ piece so the tip of the fraction piece is on the center of the circle. Trace the fraction piece by drawing along the dashed lines in the circle.


- **Step 2** Shade and label the angle formed by the $\frac{1}{6}$ piece.
- Step 3 Place the $\frac{1}{6}$ piece on the shaded angle. Turn it clockwise (in the direction that the hands on a clock move). Turn the fraction piece to line up directly beside the shaded section.
- **Step 4** Trace the fraction piece. Shade and label it. You have traced ____ sixths in all.
- Step 5 Repeat until you have shaded the entire circle.

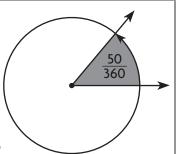
There are <u>Six</u> angles that come together in the center of the circle.


So, you need $\frac{\text{SiX}}{6}$ turns to make a circle.

Tell what fraction of the circle the shaded angle represents.


1.

2.

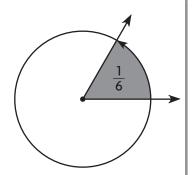

3.

Degrees

Angles are measured in units called **degrees**. The symbol for degrees is °. If a circle is divided into 360 equal parts, then an angle that turns through 1 part of the 360 measures 1°.

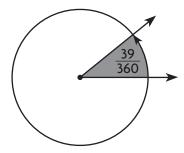
An angle that turns through $\frac{50}{360}$ of a circle measures 50°.

Find the measure of an angle that turns through $\frac{1}{6}$ of a circle.

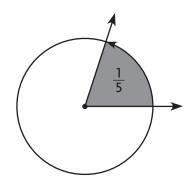

Step 1 Find a fraction that is equivalent to $\frac{1}{6}$ with 360 in the denominator. **Think:** $6 \times 60 = 360$.

$$\frac{1}{6} = \frac{1 \times 60}{6 \times 60} = \frac{60}{360}$$

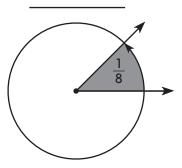
Step 2 Look at the numerator of $\frac{60}{360}$.

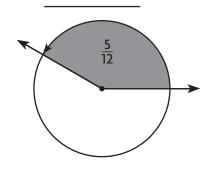

The numerator tells how many degrees are in $\frac{1}{6}$ of a circle.

So, an angle that turns through $\frac{1}{6}$ of a circle measures $\underline{60^{\circ}}$.



Tell the measure of the angle in degrees.


1.


2.

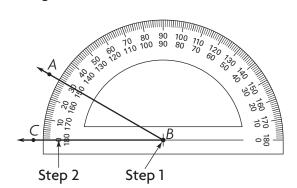
3.

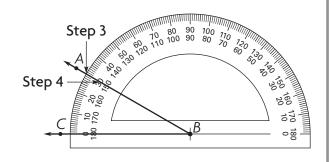
4.

Measure and Draw Angles

A **protractor** is a tool for measuring the size of an angle.

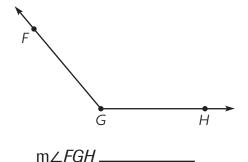
Follow the steps below to measure $\angle ABC$.

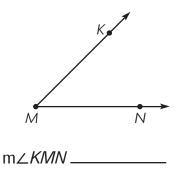

Step 1 Place the center point of the protractor on vertex *B* of the angle.


Step 2 Align the 0° mark on the protractor with ray *BC*. Note that the 0° mark is on the outer scale or top scale.

Step 3 Find where ray *BA* intersects the same scale.

Step 4 Read the angle measure on the scale.


The $m\angle ABC = \underline{30^{\circ}}$.



Use a protractor to find the angle measure.

1.

2.

Use a protractor to draw the angle.

3. 110°

4. 55°

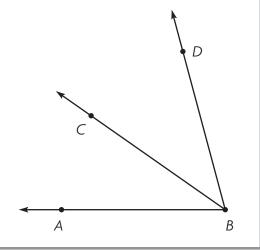
Join and Separate Angles

The measure of an angle equals the sum of the measures of its parts.

Use your protractor and the angles at the right.

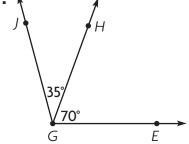
Step 1 Measure ∠*ABC* and ∠*CBD*. Record the measures.

$$m\angle ABC = \underline{35^{\circ}}; m\angle CBD = \underline{40^{\circ}}$$

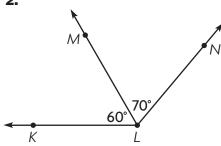

Step 2 Find the sum of the measures.

$$35^{\circ} + 40^{\circ} = 75^{\circ}$$

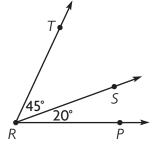
Step 3 Measure $\angle ABD$. Record the measure.


$$m\angle ABD = 75^{\circ}$$

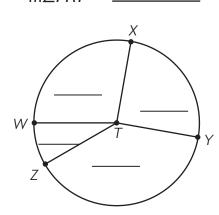
So, $m \angle ABC + m \angle CBD = m \angle ABD$.



Add to find the measure of the angle. Write an equation to record your work.

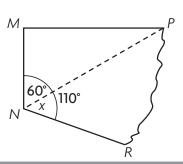

1.

2.



3.

Use a protractor and the art at the right.


- **4.** Find the measure of each angle. Label each angle with its measure.
- **5.** Write the sum of the angle measures as an equation.

Problem Solving • Unknown Angle Measures

Use the strategy draw a diagram.

Mrs. Allen is cutting a piece of wood for a set for the school play. She needs a piece of wood with a 60° angle. After the cut, what is the angle measure of the part left over?

Read the Problem

What do I need to find?

I need to find the angle measure of the part left over, or m∠PNR

What information do I need to use?

I can use the angle measures I know:

$m \angle MNP = 60^{\circ}$ and $m \angle MNR = 110^{\circ}$

How will I use the information?

I can draw a bar model to find the unknown angle measure, or m∠PNR

Solve the Problem

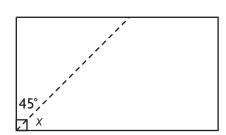
I can draw a bar model to represent the problem

Then I can write an equation to solve the problem

 $m \angle MNP + m \angle PNR = m \angle MNR$

$$60^{\circ} + x = 110^{\circ}$$

 $x = 110^{\circ} - 60^{\circ}$ or 50°


$$x = 110^{\circ} - 60^{\circ}$$
, or 50°

So, $m\angle PNR = 50^{\circ}$

The angle measure of the part left over is $\underline{50^{\circ}}$.

- 1. Cal is cutting a rectangular board as shown. What is the angle measure of the part left over?
- **2.** What equation did you use to solve?

